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Abstract The effective resistance or two-point resistance between two nodes of a resistor
network is the potential difference that appears across them when a unit current source is
applied between the nodes as terminals. This concept arises in problems which deal with
graphs as electrical networks including random walks, distributed detection and estima-
tion, sensor networks, distributed clock synchronization, collaborative filtering, clustering
algorithms and etc. In the previous paper (Jafarizadeh et al. in J. Math. Phys. 50:023302,
2009) a recursive formula for evaluation of effective resistances on the so-called distance-
regular networks was given based on the Christoffel-Darboux identity. In this paper, we con-
sider more general networks called pseudo-distance-regular networks or QD type networks,
where we use the stratification of these networks and show that the effective resistances be-
tween a given node, say α, and all of the nodes β belonging to the same stratum with respect
to α, are the same. Then, based on the spectral techniques, for those α,β’s which satisfy
L−1

αα = L−1
ββ (L−1 is the pseudo-inverse of the Laplacian of the network), an analytical for-

mula for effective resistances Rαβ(m) (the equivalent resistance between terminals α and β, so
that β belongs to the m-th stratum with respect to α) is given in terms of the first and second
orthogonal polynomials associated with the network. From the fact that in distance-regular
networks, L−1

αα = L−1
ββ is satisfied for all nodes α,β of the network, the effective resistances
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Rαβ(m) for m = 1,2, . . . , d (d is diameter of the network which is the same as the number of
strata) are calculated directly, by using the given formula.

Keywords Effective resistance · Pseudo-distance-regular networks · Stratification ·
Spectral distribution

1 Introduction

The study of electric networks was formulated by Kirchhoff [2] more than 150 years ago
as an instance of a linear analysis. Besides being a central problem in electric circuit the-
ory, the computation of resistances is also relevant to a wide range of problems ranging
from random walks (see [3]), the theory of harmonic functions [4] to lattice Green’s func-
tions [5, 6]. As it is well-known, the effective resistance (two-point resistance) between two
nodes of a resistor network is the potential difference that appears across them when a unit
current source is applied between the nodes as terminals. The effective resistance and mole-
cular structure descriptors based on it were much studied in the chemical literature [7, 8].
It is also closely related to average first passage time and average commute time which
are two important quantities in random walk models defined based on Markov chains. It
is shown in Ref. [9] that computation of average commute time can be obtained via the
Moore-Penrose generalized inverse of the (combinatorial) Laplacian matrix L = D − A,
where A is the adjacency matrix of the underlying network (graph) and D is the diagonal
matrix in which the ith diagonal entry is di (the degree of vertex i). Also, it has been shown
that this quantity and its square root are distance, since it can be shown that L−1 is sym-
metric and positive semidefinite. It is therefore called the Euclidean commute time (ECT)
distance. In fact, ECT distance is the same as effective resistance (effective resistance is
symmetric and satisfies the triangle inequality and so is a distance metric and sometimes
is called resistance distance). Therefore, any clustering algorithm (hierarchical clustering,
k-means, etc.) [10], which can be used in conjunction with ECT distance, deals with effec-
tive resistance. In fact, the concept of resistance distance between two vertices, introduced
by Klein and Randic [11] (defined to be the effective resistance between the two vertices,
when the graph is viewed as an electrical network with each edge carrying unit resistance)
in order to examine other possible metrics in (molecular) graphs, is intrinsic to the graph
with some nice purely mathematical interpretations and other interpretations [7, 12]. On the
other hand, there is the long recognized shortest path distance function which has been ex-
tensively studied and found many applications [13, 14]. For these two distance functions, the
shortest-path might be imagined to be more relevant when there is corpuscular communica-
tion (along edges) between two vertices, whereas the resistance distance might be imagined
to be more relevant when the communication is wave-like. That the communication of many
things is rather wave-like, such as, chemical communication in molecules and information
communication in networks, suggests a substantial potential for applications, beyond the
traditional electrical ones. Moreover, resistor network modeling is relevant to problems in-
cluding distributed detection and estimation [15, 16], sensor networks [17], distributed clock
synchronization [18], collaborative filtering, routing algorithms, clustering algorithms [19]
and etc. The connection between these problems and electrical networks originates from
the fact that electrical potentials on a grid are governed by the same difference equations as
those occurring in the other problems. In the problem of estimating vector valued variables
from noisy “relative” measurements, the measurement model can be expressed in terms of
a graph, whose nodes correspond to the variables being estimated and the edges to noisy
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measurements of the difference between the two variables associated with the correspond-
ing nodes (i.e., their relative values). This type of measurement model appears in several
applications such as sensor network localization, time synchronization, and motion consen-
sus. In [20], a characterization on the minimum possible covariance of the estimation error
has been obtained, when an arbitrarily large number of measurements are available. This
covariance has been shown to be equal to a matrix-valued effective resistance in an infinite
electrical network. Covariance in large finite graphs converges to this effective resistance as
the size of the graphs increases.

Recently, the authors have given a method for calculation of the effective resistance on
distance-regular networks [21], where the calculation is based on stratification introduced
in [22] and Stieltjes transform of the spectral distribution (Stieltjes function) associated
with the network. Also, in [21] it has been shown that the resistances between a node α

and all nodes β belonging to the same stratum with respect to the α (Rαβ(i) , β belonging
to the i-th stratum with respect to the α) are the same and the analytical formulas have
been given for two-point resistances Rαβ(i) , i = 1,2,3 in terms of the size of the network
and corresponding intersection array without any need to know the spectrum of the pseudo
inverse L−1. In the next work [1], the authors have used the algebraic structure of distance-
regular networks (Bose-Mesner algebra) such as stratification and spectral techniques spe-
cially the well known Christoffel-Darboux identity [23] from the theory of orthogonal poly-
nomials to give a recursive formula for calculation of all of the resistance distances Rαβ(i) ,
i = 1,2, . . . , d (d is diameter of the network which is the same as the number of strata)
on the network without any need to calculating the spectrum of the pseudo inverse of the
Laplacian of the network denoted by L−1. In this way they have shown that, the effective
resistance strictly increases by increasing the shortest path distance defined on the network,
i.e., Rαβ(m+1) − Rαβ(m) > 0 for all m = 1,2, . . . , d − 1. Here in this work, evaluation of ef-
fective resistances on more general networks called pseudo-distance-regular networks [24]
or QD type networks [25] is investigated, where we use the stratification of these networks
and show that the effective resistances between a given node such as α and all of the nodes
β belonging to the same stratum with respect to α are the same. Then, based on the spec-
tral techniques, an analytical formula for effective resistances Rαβ(m) such that L−1

αα = L−1
ββ

(those nodes α, β of the network such that the network is symmetric with respect to them) is
given in terms of the first and second orthogonal polynomials associated with the network.
Particularly, due to the fact that, in distance-regular networks we have L−1

αα = L−1
ββ for all

nodes α,β of the network, the effective resistances Rαβ(m) for m = 1,2, . . . , d are calculated
directly, by using the given formula.

The organization of the paper is as follows. In Sect. 2, we give some preliminaries such
as definitions related to electrical effective resistance, graphs, their adjacency matrices, strat-
ification of the graphs, pseudo-distance-regular graphs and spectral distribution associated
with the graphs. In Sect. 3, an analytical formula for calculating the effective resistances
in pseudo-distance-regular graphs as resistor networks is given in terms of the orthogonal
polynomials of the first kind and second kind associated with the networks. The paper is
ended with a brief conclusion and an Appendix.

2 Preliminaries

In this section we give some preliminaries such as definitions related to electrical effective
resistance, graphs, corresponding stratification, pseudo-distance-regular graphs and spectral
distribution techniques.
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2.1 Effective Resistances in Resistor Networks

A classic problem in electric circuit theory studied by numerous authors over many years, is
the computation of the resistance between two nodes in a resistor network (see, e.g., [26]).

A resistor network can be considered as an undirected graph which is a set of objects
called vertices or nodes, where some unordered pairs (but sets {x, y}) of the vertices are
connected by links called edges. Let � = (V ,E) be such a graph with v = |V | nodes and
u = |E| edges. Then, � can be viewed as a resistor network, where rij = rji is considered
as the resistance of the resistor connecting nodes i and j . Hence, the conductance is cij =
r−1
ij = cji so that cij = 0 if there is no resistor connecting i and j (the conductance cij

is considered as the weight on edge connecting nodes i and j ). The effective resistance
between a pair of nodes i and j , denoted by Rij , is the electrical resistance measured across
nodes i and j , when the network represents an electrical circuit with each edge (or branch,
in the terminology of electrical circuit) a resistor with (electrical) conductance cij . In other
words, Rij is the potential difference that appears across terminals i and j when a unit
current source is applied between them. It can be noted that, Rij is a measure of how ‘close’
the nodes i and j are: Rij is small when there are many paths between nodes i and j with
high conductance edges, and Rij is large when there are few paths, with lower conductance,
between nodes i and j . Indeed, the effective resistance Rij is sometimes referred to as the
resistance distance between nodes i and j .

Denote the electric potential at the i-th vertex by Vi and the net current flowing into
the network at the i-th vertex by Ii (which is zero if the i-th vertex is not connected to the
external world). Since there exist no sinks or sources of current including the external world,
we have the constraint

∑v

i=1 Ii = 0. The Kirchhoff law states

v∑

j=1,j �=i

cij (Vi − Vj ) = Ii, i = 1,2, . . . , v. (2.1)

Explicitly, (2.1) reads

L �V = �I , (2.2)

where, �V and �I are v-vectors whose components are Vi and Ii , respectively and

L =
∑

i

ci |i〉〈i| −
∑

i,j

cij |i〉〈j | (2.3)

is the Laplacian of the graph � with

ci ≡
v∑

j=1,j �=i

cij , (2.4)

for each vertex α. It should be noticed that, L has eigenvector (1,1, . . . ,1)t with eigen-
value 0. Therefore, L is not invertible and so we define the pseudo-inverse of L as

L−1 =
∑

i,λi �=0

λ−1
i Ei, (2.5)

where, Ei is the operator of projection onto the eigenspace of L−1 corresponding to eigen-
value λi . It has been shown that, the two-point resistances Rαβ are given by

Rαβ = 〈α|L−1|α〉 + 〈β|L−1|β〉 − 〈α|L−1|β〉 − 〈β|L−1|α〉. (2.6)
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This formula may be formally derived using Kirchoff ’s laws, and seems to have been long
known in the electrical engineering literature, with its appearing in several texts, such as
[27].

2.2 Graph and Its Adjacency Matrix

As defined in the previous subsection, a graph is a pair � = (V ,E), where V is a non-empty
set and E is a subset of {(x, y) : x, y ∈ V,x �= y}. Elements of V and of E are called vertices
and edges, respectively. Two vertices x, y ∈ V are called adjacent if (x, y) ∈ E, and in that
case we write x ∼ y. For a graph � = (V ,E), the adjacency matrix A is defined as

(
A)α,β =

{
1 if α ∼ β,
0 otherwise.

(2.7)

Conversely, for a non-empty set V , a graph structure is uniquely determined by such a matrix
indexed by V . The degree or valency of a vertex x ∈ V is defined by

deg(x) ≡ κ(x) = |{y ∈ V : y ∼ x}| (2.8)

where, | · | denotes the cardinality. The graph is called regular if the degree of all of the
vertices be the same. In this paper, we will assume that graphs under discussion are regular.
A finite sequence x0, x1, . . . , xn ∈ V is called a walk of length n (or of n steps) if xi−1 ∼ xi

for all i = 1,2, . . . , n. Let l2(V ) denote the Hilbert space of C-valued square-summable
functions on V . With each β ∈ V we associate a vector |β〉 such that the β-th entry of it is 1
and all of the other entries of it are zero. Then {|β〉 : β ∈ V } becomes a complete orthonormal
basis of l2(V ). The adjacency matrix is considered as an operator acting in l2(V ) in such a
way that

A|β〉 =
∑

α∼β

|α〉. (2.9)

2.3 Stratification

For x �= y let ∂(x, y) be the length of the shortest walk connecting x and y. By definition
∂(x, x) = 0 for all x ∈ V . The graph becomes a metric space with the distance function ∂ .
Note that ∂(x, y) = 1 if and only if x ∼ y. We fix a point o ∈ V as an origin of the graph,
called reference vertex. Then, the graph � is stratified into a disjoint union of strata:

V =
∞⋃

i=0

�i(o), �i(o) := {α ∈ V : ∂(α, o) = i}. (2.10)

Note that �i(o) = ∅ may occur for some i ≥ 1. In that case we have �i(o) = �i+1(o) =
· · · = ∅. With each stratum �i(o) we associate a unit vector in l2(V ) defined by

|φi〉 = 1√
κi

∑

α∈�i (o)

|α〉, (2.11)

where, κi = |�i(o)| is called the i-th valency of the graph (κi := |{γ : ∂(o, γ ) = i}| =
|�i(o)|). The closed subspace of l2(V ) spanned by {|φi〉} is denoted by 
(�). Since {|φi〉}
becomes a complete orthonormal basis of 
(�), we often write


(�) =
∑

i

⊕C|φi〉. (2.12)
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Fig. 1 Shows edges through α and β in a pseudo-distance-regular graph

2.4 Pseudo-Distance-Regular Graphs

Given a vertex α ∈ V of a graph �, consider the stratification (2.10) with respect to α such
that �i(α) = ∅ for i > d . Then, we say that � is pseudo-distance-regular around vertex α

whenever for any β ∈ �k(α) and 0 ≤ k ≤ d , the numbers

ck(β) := 1

κ(β)

∑

γ∈�1(β)∩�k−1(α)

κ(γ ), ak(β) := 1

κ(β)

∑

γ∈�1(β)∩�k(α)

κ(γ ),

bk(β) := 1

κ(β)

∑

γ∈�1(β)∩�k+1(α)

κ(γ ),

(2.13)

do not depend on the considered vertex β ∈ �k(α), but only on the value of k. In such a case,
we denote them by ck , ak and bk respectively. Then, the matrix

⎛

⎜
⎝

0 c1 . . . cd−1 cd

a0 a1 . . . ad−1 ad

b0 b1 . . . bd−1 0

⎞

⎟
⎠ (2.14)

is called the (pseudo-)intersection array around vertex α of �. It is shown in [24] that this
is a generalization of the concept of distance-regularity around a vertex (which in turn is a
generalization of distance-regularity). It should be noticed that for regular graphs � (κ(β) =
κ for all β ∈ V ), the numbers ck, ak and bk read as

ck = |�1(β) ∩ �k−1(α)|, ak = |�1(β) ∩ �k(α)|, bk = |�1(β) ∩ �k+1(α)|, (2.15)

where we tacitly understand that �−1(α) = ∅ (see Fig. 1). The intersection numbers (2.15)
and the valencies κi = |�i(α)| satisfy the following obvious conditions

ai + bi + ci = κ, κi−1bi−1 = κici , i = 1, . . . , d,

κ0 = c1 = 1, b0 = κ1 = κ, (c0 = bd = 0).
(2.16)

One should notice that, the definition of pseudo-distance regular graphs together with
(2.16), imply that in general, the valencies κi ( the size of the i-th stratum) for i = 0,1, . . . , d

do not depend on the considered vertex β ∈ �k(α), but only on the value of k.
The notion of pseudo-distance regularity has a close relation with the concept of QD type

graphs introduced by Obata [25], such that for the adjacency matrices of this type of graphs,
one can obtain a quantum decomposition associated with the stratification (2.10) as

A = A+ + A− + A0, (2.17)
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where, the matrices A+, A− and A0 are defined as follows: for β ∈ �k(α), we set

(
A+)βδ =

{
Aβδ if δ ∈ �k+1(α),
0 otherwise,

(
A−)βδ =

{
Aβδ if δ ∈ �k−1(α),
0 otherwise,

(
A0)βδ =

{
Aβδ if δ ∈ �k(α),
0 otherwise,

or equivalently, for |k,β〉,

A+|k,β〉 =
∑

δ∈�k+1(α),δ∼β

|k + 1, δ〉,

A−|k,β〉 =
∑

δ∈�k−1(α),δ∼β

|k − 1, δ〉, (2.18)

A0|k,β〉 =
∑

δ∈�k(α),δ∼β

|k, δ〉.

Since β ∈ �k(α) and β ∼ δ then δ ∈ �k−1(α) ∪ �k(α) ∪ �k+1(α).
It has been shown in [25] that, if 
(�) is invariant under the quantum components

A+,A− and A0, then there exist two sequences (called Szegö–Jacobi sequences) {ωl}∞
l=1

and {αl}∞
l=1 derived from A such that

A+|φl〉 = √
ωl+1|φl+1〉, l ≥ 0,

A−|φ0〉 = 0, A−|φl〉 = √
ωl |φl−1〉, l ≥ 1, (2.19)

A0|φl〉 = αl |φl〉, l ≥ 0,

where ωl+1 = κl+1
κl

κ2−(j), κ−(j) = |{i ∈ �l(α) : i ∼ j}| for j ∈ �l+1(α) and αl = κ0(j),
such that κ0(j) = |{i ∈ Vl; i ∼ j}| for j ∈ �l(α), for l ≥ 0. One can easily check that the
coefficients αi and ωi are given by

αk ≡ ak = κ − bk − ck, ωk ≡ β2
k = bk−1ck, k = 1, . . . , d. (2.20)

By using (2.17) and (2.19), one can obtain

A|φl〉 = βl+1|φl+1〉 + αl |φl〉 + βl|φl−1〉, l ≥ 0, (2.21)

with βl := √
ωl . Then, by using (2.21), one can deduce that

|φl〉 = Pl(A)|φ0〉, l = 1,2, . . . , d, (2.22)

where, Pl(A) = a0 + a1A + a2A
2 + · · · + alA

l is a polynomial of degree l in indeterminate
A and conversely Al can be written as a linear combination of P0(A),P1(A), . . . ,Pd(A). In
fact, it can be shown that [28], the unit vectors |φl〉 for l = 0,1, . . . , d are the orthonormal
basis produced by application of the orthonormalization process (Lanczos algorithm) to the
so called Krylov basis {|φ0〉,A|φ0〉,A2|φ0〉, . . . ,Ad |φ0〉} (for more details see for example
[22, 28]).
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2.5 Spectral Distribution Associated with the Network

In this subsection we recall some facts about the spectral distribution associated with the ad-
jacency matrix of the network. In fact, the spectral analysis of operators is an important issue
in quantum mechanics, operator theory and mathematical physics [29, 30]. Since the advent
of random matrix theory (RMT), there has been considerable interest in the statistical analy-
sis of spectra [31–33]. Also, the two-point resistance has a probabilistic interpretation based
on classical random walker walking on the network. Indeed, the connection between random
walks and electric networks has been recognized for some time (see e.g. [34–36]), where one
can establish a connection between the electrical concepts of current and voltage and corre-
sponding descriptive quantities of random walks regarded as finite state Markov chains (for
more details see [3]). Also, by adapting the random-walk dynamics and mean-field theory
it has been studied that [37], how the growth of a conducting network, such as electrical or
electronic circuits, interferes with the current flow through the underlying evolving graphs.
In [21], it has been shown that, there is also connection between the mathematical tech-
niques introduced in previous subsections and this subsection such as Hilbert space of the
stratification and spectral techniques (which have been employed in [22, 28, 38–40] for in-
vestigating continuous time quantum walk on graphs), and electrical concept of resistance
between two arbitrary nodes of regular networks, and so the same techniques can be used
for calculating the resistance. Note that, although we take the spectral approach to obtain an
explicit formula for the effective resistance in terms of orthogonal polynomials (which are
orthogonal with respect to the spectral distribution μ associated with the network) with three
term recursion relations, in practice as it will be seen in Sect. 3, the effective resistances will
be calculated without any need to evaluate the spectral distribution μ.

It is well known that, for any pair (A, |φ0〉) of a matrix A and a vector |φ0〉, it can be
assigned a measure μ as follows

μ(x) = 〈φ0|E(x)|φ0〉, (2.23)

where E(x) = ∑
i |ui〉〈ui | is the operator of projection onto the eigenspace of A correspond-

ing to eigenvalue x, i.e.,

A =
∫

xE(x)dx. (2.24)

It is easy to see that, for any polynomial P (A) we have

P (A) =
∫

P (x)E(x)dx, (2.25)

where for discrete spectrum the above integrals are replaced by summation. Therefore, using
the relations (2.23) and (2.25), the expectation value of powers of adjacency matrix A over
starting site |φ0〉 can be written as

〈φ0|Am|φ0〉 =
∫

R

xmμ(dx), m = 0,1,2, . . . . (2.26)

The existence of a spectral distribution satisfying (2.26) is a consequence of Hamburger’s
theorem, see e.g., Shohat and Tamarkin [41, Theorem 1.2].
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Obviously relation (2.26) implies an isomorphism from the Hilbert space of the stratifica-
tion onto the closed linear span of the orthogonal polynomials with respect to the measure μ.
More clearly, the orthonormality of the unit vectors |φi〉 implies that

δij = 〈φi |φj 〉 =
∫

R

Pi(x)Pj (x)μ(dx), (2.27)

where, we have used (2.22) to write |φi〉 = Pi(A)|φ0〉. Now, by substituting (2.22) in (2.21),
we get three term recursion relations between polynomials Pj (A), which leads to the fol-
lowing three term recursion relations between polynomials Pj (x)

xPk(x) = βk+1Pk+1(x) + αkPk(x) + βkPk−1(x) (2.28)

for k = 0, . . . , d − 1, with P0(x) = 1. Multiplying two sides of (2.28) by β1 · · ·βk we obtain

β1 · · ·βkxPk(x) = β1 · · ·βk+1Pk+1(x) + αkβ1 · · ·βkPk(x) + β2
k .β1 · · ·βk−1Pk−1(x). (2.29)

By rescaling Pk as Qk = β1 · · ·βkPk , the spectral distribution μ under question is character-
ized by the property of orthonormal polynomials {Qk} defined recurrently by

Q0(x) = 1, Q1(x) = x,

xQk(x) = Qk+1(x) + αkQk(x) + β2
k Qk−1(x), k ≥ 1

(2.30)

(for more details see [23, 41–43]).
It should be noticed that, the starting values of the recurrence (2.30) are Q−1 = 0, Q0 = 1.

If one starts from q−1 = −1, q0 = 0 and uses the same recurrence (with ω0 = 1)

xqn(x) = qn+1(x) + αnqn(x) + ωnqn−1(x), (2.31)

then qn is of degree n − 1, and by Favard’s theorem the different qn’s are orthogonal with
respect to some measure. The qn’s are called orthogonal polynomials of the second kind
(sometimes for Qn we say that they are of the first kind). They can also be written in the
form

qn(z) =
∫

R

Qm(z) − Qm(x)

z − x
dμ(x), (2.32)

(for more details see for example [44]).

3 Evaluation of Effective Resistances in Pseudo-Distance-Regular Resistor Networks

In this section, we consider pseudo-distance-regular graphs as resistor networks and obtain
an explicit formula for evaluation of effective resistances. The results obtained in this section
show that, there is a close connection between the techniques introduced in Sect. 2 such
as Hilbert space of the stratification and the orthogonal polynomials of the first and second
kind associated with the networks, and electrical concept of resistance between two arbitrary
nodes of the networks.

Hereafter, we assume that all nonzero resistances (associated with the edges) are equal
to 1. Then, by using (2.3), the off-diagonal elements of −L are precisely those of the corre-
sponding adjacency matrix A, i.e., we have

L = κI − A, (3.33)
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with κ ≡ κ1 = deg(α), for each vertex α.
Now, consider two nodes α,β ∈ V such that L−1

αα = L−1
ββ (as we will see in Sect. 4.1, for

distance-regular graphs as resistor networks, the diagonal entries of L−1 are independent of
the vertex, i.e., for all α,β ∈ V , we have L−1

αα = L−1
ββ ). Then, from the relation (2.6) and the

fact that L−1 is a real matrix, we can obtain the two-point resistance between the nodes α

and β as follows

Rαβ = 2(L−1
αα − L−1

αβ ). (3.34)

It should be noticed that, due to the stratification of the network, all of the nodes belonging to
the same stratum with respect to the reference node (a node which stratification is done with
respect to it), possess the same effective resistance with respect to the reference node (the
proof is given in the Appendix). More clearly, in order to evaluate the effective resistance
between two nodes α and β of a network, we consider one of the nodes, say α, as reference
node and stratify the network with respect to α. Then, β will belong to one of the strata with
respect to α, say the m-th stratum �m(α). Now, for all β ∈ �m(α), one can write

L−1
αβ(m) = 〈α|L−1|β〉 = 1√

κm

〈α|L−1|φm〉 = 1√
κm

〈α|Pm(A)L−1|α〉, (3.35)

where, we have used (2.11) and (2.22) and the lemma given in the Appendix. Then, by using
(3.34), we obtain for all β ∈ �m(α)

Rαβ(m) = 2√
κm

{√
κmL−1

αα − (Pm(A)L−1)αα

}

= 2√
κmω1 · · ·ωm

〈α|
√

κmω1 · · ·ωm1 − Qm(A)

κ1 − A
|α〉

= 2√
κmω1 · · ·ωm

∫

R−{κ}

Qm(κ) − Qm(x)

κ − x
dμ(x), (3.36)

where, the upper index m in L−1
αβ(m) and Rαβ(m) indicate that β belongs to the m-th stra-

tum with respect to α. Note that, we have substituted Pm(x) = 1√
ω1···ωm

Qm(x) and used the

equality Qm(κ) = √
κmω1 · · ·ωm which can be verified easily. It should be noticed that, the

result (3.36) can be written as

Rαβ(m) = 2√
κmω1 · · ·ωm

{∫

R

Qm(κ) − Qm(x)

κ − x
dμ(x) − 1

v

(
∂

∂x
Qm(x)

)∣
∣
∣
∣
x=κ

}

. (3.37)

Now, by using (2.32) and (3.37), we obtain the main result of the paper as follows

Rαβ(m) = 2√
κmω1 · · ·ωm

{

qm(κ) − 1

v

(
∂

∂x
Qm(x)

)∣
∣
∣
∣
x=κ

}

, m = 1,2, . . . , d. (3.38)

We recall that, the result (3.38) can be used only for evaluating the effective resistance
between nodes such that the network is symmetric with respect to them in the sense that,
stratification of the network with respect to these nodes produces the same strata. Then for
such nodes α and β , we will have L−1

αα = L−1
ββ .
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4 Examples

4.1 Evaluation of Effective Resistances on Distance-Regular Networks

First, we recall the definition of special kind of pseudo-distance-regular networks called
distance-regular networks:

Definition A pseudo-distance regular network � = (V ,E) is called distance-regular with
diameter d if for all k ∈ {0,1, . . . , d}, and α,β ∈ V with β ∈ �k(α), the numbers ck(β),
ak(β) and bk(β) defined in (2.13) depend only on k but do not depend on the choice of α

and β .

It should be noticed that, in distance-regular networks, the i-th adjacency matrix of the
network � = (V ,R) is defined by

(
Ai)α,β =

{
1 if ∂(α,β) = i,

0 otherwise.
(4.39)

Then, from the definition of Ai , for the reference state |φ0〉 (|φ0〉 = |o〉, with o ∈ V as
reference vertex), we have

Ai |φ0〉 =
∑

β∈�i (o)

|β〉. (4.40)

Then by using (2.11) and (4.40), we have

Ai |φ0〉 = √
κi |φi〉. (4.41)

Also, it can be shown that, for adjacency matrices of a distance regular graph, we have

A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1, for i = 1,2, . . . , d − 1,

A1Ad = bd−1Ad−1 + adAd.
(4.42)

Using the recursion relations (4.42), one can show that Ai is a polynomial in A1 of degree i,
i.e., we have

Ai = Pi(A1), i = 1,2, . . . , d, (4.43)

and conversely Ai
1 can be written as a linear combination of I,A1, . . . ,Ad (for more details

see for example [22]).
Now, it should be noticed that, stratification of distance-regular networks will be indepen-

dent of the choice of the reference node (the node which stratification is done with respect
to it). Then, clearly we will have L−1

αα = L−1
ββ for all α,β ∈ V with α �= β and consequently,

the result (3.38) can be used for evaluation of the effective resistance between any two arbi-
trary nodes α,β; It is sufficient to choose one of these nodes, say α, as reference node and
stratify the network with respect to it. Then, β will be contained in one of the strata, say
m-th stratum, with respect to α and so the effective resistance between α,β ∈ �m(α) can be
evaluated via (3.38).
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4.1.1 Cycle Network Cv

A well known example of distance-regular networks, is the cycle network Cv with κ = 2.
The network Cv for v = 2k or v = 2k + 1 consists of k + 1 strata, where the intersection
arrays for even and odd number of vertices are given by

{b0, . . . , bk−1; c1, . . . , ck} = {2,1, . . . ,1,1;1, . . . ,1,2} and (4.44)

{b0, . . . , bk−1; c1, . . . , ck} = {2,1, . . . ,1;1, . . . ,1,1}, (4.45)

respectively. Then, by using (2.20), for even v = 2k the QD parameters are given by

αi = 0, i = 0,1, . . . , k; ω1 = ωk = 2, ωi = 1, i = 2, . . . , k − 1, (4.46)

where, for odd v = 2k + 1, we obtain

αi = 0, i = 0,1, . . . , k − 1, αk = 1; ω1 = 2, ωi = 1, i = 2, . . . , k.

(4.47)

We consider v = 2k (the case v = 2k +1 can be considered similarly). Then, by using (2.30)
and (4.46), one can obtain

Q0 = 1, Q1 = x, Qi(x) = 2Ti(x/2), i > 1; qi(x) = Qi−1(x), i ≥ 1,

(4.48)

where, Ti ’s are Chebyshev polynomials in one variable, which are recursively defined by

T0 = 1, T1 = x, Tn(x) = 2xTn−1 − Tn−2, n > 1. (4.49)

Then, by using (3.38) and (4.48), the effective resistance between any two nodes α,β ∈
�m(α), is obtained as

Rαβ(1) = q1(2) − 1

2k

∂

∂x
Q1(x)

∣
∣
∣
∣
x=2

= 1 − 1

2k
,

Rαβ(m) = 2Tm−1(1) − 1

2k
T ′

m(1), for m > 1. (4.50)

4.1.2 (d + 1)-Simplex Fractals

(d + 1)-simplex fractal is a generalization of a two dimensional Sierpinski gasket to
d-dimensions such that its subfractals are (d + 1)-simplices or d-dimensional polyhedra
with S(d+1)-symmetry. In order to obtain a fractal with decimation number 2, we choose a
(d + 1)-simplex and divide all the links (that is the lines connecting sites ) into 2 parts and
then draw all possible d-dimensional hyperplanes through the links parallel to the transverse
d-simplices. Next, having omitted every other innerpolyhedra, we repeat this process for
the remaining simplices or for the subfractals of next higher generation. This way through
(d + 1)-simplex fractals are constructed. We label subfractals of generation (d + 1) in terms
of partition of 1 into (d + 1) positive integers λ1, λ2, . . . , λd+1. Each partition represents a
subfractal of generation d , and λ shows the distance of the corresponding subfractal from
d-dimensional hyperplanes which construct the (d + 1)-simplex. On the other hand, each
vertex denoted by partition of 2 into (d + 1) non-negative integers η1, η2, . . . , ηd+1 and ob-
viously the i-th vertex of subfractal (λ1, λ2, . . . , λd+1) is denoted by ηj = λj + δi,j , where
j = 1,2, . . . , d + 1 (for more details see [45, 46]).
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Fig. 2 (a) Shows 3-simplex
fractal with decimation number
b = 2. (b) Shows 5-simplex
fractal with decimation number
b = 2

(a)

(b)

Now, we consider the (d +1)-simplex fractal with decimation number b = 2 such that all
of the d + 1 vertices (20 . . .0)

︸ ︷︷ ︸
d+1

, (020 . . .0)
︸ ︷︷ ︸

d+1

, . . . , (0 . . .02)
︸ ︷︷ ︸

d+1

are connected via a resistor to each

other (see Fig. 2(a) and (b) for d = 2 and d = 4, respectively). Then, the number of vertices

o (d + 1)-simplex fractal is v = Cd+1
1 + Cd+1

2 = (d+1)(d+2)

2 such that the degree of each
vertex is κ = 2d . Also, it can be easily shown that the network has 3 strata with respect to
the reference node (200 . . .0), where the unit vectors |φi〉, i = 0,1,2 are given as follows

|φ0〉 = |200 . . .0〉
︸ ︷︷ ︸

d+1

,

|φ1〉 = 1√
2d

d+1∑

i=2

(|00 . . .0 2︸︷︷︸
i

0 . . .0〉 + |10 . . .0 1︸︷︷︸
i

0 . . .0〉), (4.51)

|φ2〉 =
√

2

d(d − 1)

∑

i,j=2,...,d+1;i<j

|0 . . .0 1︸︷︷︸
i

0 . . .0 1︸︷︷︸
j

0 . . .0〉.
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Then, one can show that

A|φ0〉 = √
2d|φ1〉,

A|φ1〉 = √
2d|φ0〉 + d|φ1〉 + 2

√
d − 1|φ2〉,

A|φ2〉 = 2
√

d − 1|φ1〉 + 2(d − 2)|φ2〉.
(4.52)

Also, by using the recursion relations (4.52) one can easily show that the adjacency matrices
A ≡ A1,A2 = J − A − I (where, J is all one matrix) satisfy the following relations

A2 = 2d.I (d+1)(d+2)
2

+ d.A + 4A2,

AA2 = (d − 1)A + 2(d − 2)A2.
(4.53)

It should be noticed that if we stratify the network with respect to another reference node
such as (1100 . . .0), the unit vectors will be obtained as

|φ0〉 = |1100 . . .0〉
︸ ︷︷ ︸

d+1

,

|φ1〉 = 1√
2d

{ ∑

i=3,...,d+1

(|10 . . .0 1︸︷︷︸
i

0 . . .0〉 + |010 . . .0 1︸︷︷︸
i

0 . . .0〉)

+ |200 . . .0〉 + |020 . . .0〉
}

,

|φ2〉 =
√

2

d(d − 1)

{ ∑

i=3,...,d+1

|00 . . .0 2︸︷︷︸
i

0 . . .0〉

+
∑

i,j=3,...,d+1;i<j

|00 . . .0 1︸︷︷︸
i

0 . . .0 1︸︷︷︸
j

0 . . .0〉
}

.

(4.54)

Then, one can show that, the same recursion relations as in (4.52) and (4.53) are satisfied
for this stratification, i.e., stratification of the network gives three-term recursion relations
independent of the choice of the reference node and so the network is distance-regular.

Now, by using (2.21) and (4.52), one can obtain

α0 = 0, α1 = d, α2 = 2(d − 2); ω1 = 2d, ω2 = 4(d − 1). (4.55)

Then, by using the recursion relations (2.30) and (2.31), one can see that

Q1(x) = x, Q2(x) = x2 − dx − 2d; q1(x) = 1, q2(x) = x − d. (4.56)

It should be noticed that, the intersection array of the (d + 1)-simplex fractal with dec-
imation number b = 2, can be evaluated by using (2.20) and (4.55) as: {b0, b1; c1, c2} =
{2d, d − 1;1,4} which implies that κ = b0 = 2d, κ2 = κb1

c2
= d(d−1)

2 . Now, by using (3.38)
and (4.56), the effective resistance between any node α ∈ V and β ∈ �m(α) for m = 1,2 is
given by

Rα,β(1) = 2

κ

(

1 − 1

v

)

= 1

d

(

1 − 2

(d + 1)(d + 2)

)

= d + 3

(d + 1)(d + 2)
,
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Fig. 3 Shows the Hexagon
network

Rα,β(2) = 1

d(d − 1)

{

q2(2d) − 1

v
(2x − d)|x=2d

}

(4.57)

= 1

d(d − 1)

{

d − 2

(d + 1)(d + 2)
.3d

}

= d + 4

(d + 1)(d + 2)
.

4.1.3 Hexagon Network

Consider the hexagon network with its diameters shown in Fig. 3. As the figure shows,
this network has 6 nodes with intersection array {b0, b1; c1, c2} = {3,2;1,3}. Then by using
(2.16) and (2.20), one can obtain

κ = 3, κ2 = 2; α0 = α1 = α2 = 0, ω1 = 3, ω2 = 6. (4.58)

Then, by using (2.30) and (4.58), we obtain

Q0 = 1, Q1 = x, Q2(x) = x2 − 3; q1(x) = 1, q2(x) = x. (4.59)

Now, by using (3.38) and (4.59), the effective resistance between any node α ∈ V and β ∈
�m(α) for m = 1,2 is given by

Rα,β(1) = 2

3

(

1 − 1

6

)

= 5

9
, Rα,β(2) = 1

3

{

q2(3) − 1

6
(2x)|x=3

}

= 2

3
. (4.60)

4.1.4 A Bipartite Distance-Regular Network with 2n Nodes

Consider a distance-regular network with 2n nodes and adjacency matrices as

A1 = σx ⊗ (Jn − In), A2 = I2 ⊗ (Jn − In), A3 = σx ⊗ In, (4.61)

where, Jn is an n × n matrix such that all of its entries are one. Then, one can show that

A2
1 = (n−1)I2n +(n−2)A2, A1A2 = (n−2)A1 +(n−1)A3, A1A3 = A2. (4.62)

By using (4.42) and (4.62), the intersection array of the network is given by

{b0, b1, b2; c1, c2, c3} = {n − 1, n − 2,1;1, n − 2, n − 1}.
Then, by using (2.16) and (2.20), one can obtain

κ = n − 1, κ2 = n − 1, κ3 = 1,

αi = 0, i = 0,1,2, ω1 = n − 1, ω2 = (n − 2)2, ω3 = n − 1.
(4.63)
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Fig. 4 Shows a
pseudo-distance-regular network
with 16 nodes derived from
Hadamard graph

Now, by using (2.30) and (4.63), we obtain

Q0 = 1, Q1 = x, Q2(x) = x2 − n + 1, Q3(x) = x3 − (n2 − 3n + 3)x;
q1(x) = 1, q2(x) = x, q3(x) = x2 − (n − 2)2.

(4.64)

So, by using (3.38) and (4.64), the effective resistance between any node α ∈ V and β ∈
�m(α) for m = 1,2,3 is given by

Rα,β(1) = 2

n − 1

(

1 − 1

2n

)

= 2n − 1

n(n − 1)
,

Rα,β(2) = 2

(n − 1)(n − 2)

{

q2(n − 1) − 1

2n
(2x)|x=n−1

}

= 2(n − 1)

n(n − 2)
, (4.65)

Rα,β(3) = 2

(n − 1)(n − 2)

{

q3(n − 1) − 1

2n
[3x2 − (n2 − 3n + 3)]|x=n−1

}

= 2n − 3

(n − 1)(n − 2)
.

4.2 Evaluation of Effective Resistance in Examples of Pseudo-Distance-Regular Networks

4.2.1 Pseudo-Distance-Regular Network Derived from Hadamard Network with 16 Nodes

Consider the pseudo-distance-regular network shown in Fig. 4. This network is obtained
from the Hadamard network with intersection array {4,3,2,1;1,2,3,4}. As Fig. 4 shows,
the network is symmetric with respect to the initial and final (horizontal) nodes 1 and 16 ∈
�4(1) and also with respect to the initial and final (vertical) nodes 6 and 11 ∈ �4(6). One
should notice that stratification of the network with respect to the nodes 1 and 16 produces
the same strata. For stratification with respect to the node 1 or 16, we have

κ = 4, κ2 = 6, κ3 = 4, κ4 = 1,

αi = 0, i = 0, . . . ,3; ω1 = 4, ω2 = 6, ω3 = 6, ω4 = 4
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(see (2.19)). Then, by using the recursion relations (2.30) and (2.31), one can obtain

Q4(x) = x4 − 16x2 + 24, q4(x) = x3 − 12x. (4.66)

Now, from (3.38), the effective resistance between nodes 1 and 16 ∈ �4(1) is given by

R1,16 = 1

12

{

q4(4) − 1

16
(4x3 − 32x)|x=4

}

= 2

3
. (4.67)

In order to evaluate the effective resistance between vertical nodes 6 and 11, one must con-
sider the stratification of the network with respect to the node 6 or 11. For this stratification,
we obtain

κ = 4, κ2 = 4, κ3 = 4, κ4 = 3

αi = 0, i = 0, . . . ,3; ω1 = 4, ω2 = 4, ω3 = 1, ω4 = 12.

Then, by using the recursion relations (2.30) and (2.31), one can obtain

Q4(x) = x4 − 9x2 + 4, q4(x) = x3 − 5x. (4.68)

Therefore, from (3.38), the effective resistance between nodes 6 and 11 ∈ �4(6) is given by

R6,11 = 1

12

{

q4(4) − 1

16
(4x3 − 18x)|x=4

}

= 65

24
. (4.69)

4.2.2 Pseudo-Distance-Regular Network Derived from Desargues

This network has 20 nodes with

{b0, b1, b2, b3, b4; c1, c2, c3, c4, c5} = {3,2,2,1,1;1,1,2,2,3}.

Then, by using (2.16) and (2.20), one can obtain

κ = 3, κ2 = 6, κ3 = 6, κ4 = 3, κ5 = 1,

αi = 0, i = 0,1, . . . ,5; ω1 = 3, ω2 = 2, ω3 = 4, ω4 = 2, ω5 = 3.

The stratification with respect to the initial node 1 and the final node 20 produces the same
strata. Therefore, the effective resistance between the nodes 1 and 20 can be evaluated by
using (3.38). By using the recursion relations (2.30) and (2.31), we obtain

Q5(x) = x5 − 11x3 + 22x, q5(x) = x4 − 8x2 + 4. (4.70)

Then, from (3.38), the effective resistance between nodes 1 and 20 ∈ �5(1) is given by

R1,20 = 1

6

{

q5(3) − 1

20
(5x4 − 33x2 + 22)|x=3

}

= 13

12
. (4.71)
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Fig. 5 Shows a
pseudo-distance-regular network
with 9 nodes

4.2.3 Pseudo-Distance-Regular Network Derived from Hadamard Network with 32 Nodes

Consider the pseudo-distance-regular network obtained from the Hadamard network with
intersection array {8,7,4,1;1,4,7,8} such that, the network is symmetric with respect to
the initial and final (horizontal) nodes 1 and 32 ∈ �4(1) and also with respect to the initial
and final (vertical) nodes 10 and 23 ∈ �4(10). One should notice that stratification of the
network with respect to the nodes 1 and 32 produces the same strata. For stratification with
respect to the node 1 or 32, we have

κ = 8, κ2 = 14, κ3 = 8, κ4 = 1,

αi = 0, i = 0, . . . ,4; ω1 = 8, ω2 = 28, ω3 = 28, ω4 = 8

(see (2.19)). Then, by using the recursion relations (2.30) and (2.31), one can obtain

Q4(x) = x4 − 64x2 + 224, q4(x) = x3 − 56x. (4.72)

Now, from (3.38), the effective resistance between nodes 1 and 32 ∈ �4(1) is given by

R1,32 = 1

112

{

q4(8) − 1

32
(4x3 − 128x)|x=8

}

= 2

7
. (4.73)

In order to evaluate the effective resistance between vertical nodes 10 and 23 ∈ �4(10), one
must consider the stratification of the network with respect to the node 10 or 23 and evaluate
R10,23 as before.

4.2.4 A Network with 9 Nodes

Consider the network given in Fig. 5 with 9 nodes and the following intersection array

{b0, b1; c1, c2} = {4,2;1,2}.

Then by using (2.16) and (2.20), one can obtain

κ = 4, κ2 = 4; α0 = 0, α1 = 1, α2 = 2, ω1 = ω2 = 4.
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Fig. 6 Shows a
pseudo-distance-regular network
with 16 nodes

As it can be seen from Fig. 5, the stratification with respect to the nodes 1 and 9 ∈ �2(1)

produces the same strata. Then, by using the recursion relations (2.30) and (2.31), one can
obtain

Q2(x) = x2 − x − 4, q2(x) = x − 1. (4.74)

Now, from (3.38), the effective resistance between nodes 1 and 9 ∈ �2(1) is given by

R1,9 = 1

4

{

q2(4) − 1

9
(2x − 1)|x=4

}

= 5

9
. (4.75)

4.2.5 A Network with 16 Nodes

Consider the network given in Fig. 6 with 16 nodes and the following intersection array

{b0, b1, b2, b3; c1, c2, c3, c4} = {4,3,2,1;1,2,3,4}.
Then by using (2.16) and (2.20), one can obtain

κ = 4, κ2 = 6, κ3 = 4, κ4 = 1;
αi = 0, i = 0,1, . . . ,4, ω1 = 4, ω2 = ω3 = 6, ω4 = 4.

As it can be seen from Fig. 6, the stratification with respect to the nodes 1 and 16 ∈ �2(1)

produces the same strata. Then, by using the recursion relations (2.30) and (2.31), one can
obtain

Q2(x) = x2 − 4, q2(x) = x. (4.76)

Now, from (3.38), the effective resistance between nodes 1 and 16 ∈ �2(1) is given by

R1,16 = 1

6

{

q2(4) − 1

16
(2x)|x=4

}

= 7

12
. (4.77)
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4.2.6 Generalized G2(m) Type Network

Consider the network with 2(2m+1 − 1) nodes and the following intersection array

{b0, b1, . . . , bm; c1, c2, . . . , cm, cm+1} = {3,2, . . . ,2;1,1, . . .1,3}.

Then by using (2.16) and (2.20), one can obtain

κ = 3, κi = 3.2i−1, i = 2, . . . ,m, κm+1 = 2m,

αi = 0, i = 0,1, . . . ,m + 1; ω1 = 3, ω2 = · · · = ωm = 2, ωm+1 = 6.

Then, the stratification with respect to the initial node 1 and the final node 2m+2 − 2 ∈
�1(1) produces the same strata. Therefore, from the fact that Q1(x) = x and q1(x) = 1, the
effective resistance between nodes 1 and 2m+2 − 2 ∈ �1(1) is obtained as

R
1,2m+2−2

= 2

3

(

1 − 1

2(2m+1 − 1)

)

= 2m+2 − 3

3(2m+1 − 1)
. (4.78)

5 Conclusion

Based on the stratification of the pseudo-distance-regular networks and using spectral tech-
niques, the evaluation of the effective resistances on these networks was discussed. It was
shown that, in these types of networks, the effective resistances between a node α and all
nodes β belonging to the same stratum with respect to the α are the same. Then, an explicit
analytical formula for the effective resistance between two nodes α,β of a pseudo-distance-
regular resistor network such that L−1

αα = L−1
ββ (L−1 is the pseudo-inverse of the Laplacian

matrix of the network) was given in terms of the first and second orthogonal polynomials
associated with the network. It was deduced that, the obtained result can be used for eval-
uation of the effective resistance between any two arbitrary nodes α,β in distance-regular
networks, where we have L−1

αα = L−1
ββ for all nodes α,β .

Appendix

In this appendix we prove the following lemma in connection with the equality of effective
resistance between the reference node and all of the nodes belonging to the same stratum
with respect to the reference node.

Lemma Let Rαβ denote the effective resistance between nodes α,β ∈ V . Then for pseudo-
distance-regular networks, by choosing one of the nodes, say α as reference node, the effec-
tive resistance Rαβ is the same for all nodes β ∈ �m(α), where m ∈ {1,2, . . . , d}.

Proof In order to prove the above lemma, we prove that in general for any pseudo-distance-
regular network with diameter d , we have 〈φ0|f (A)|β〉 (|φ0〉 ≡ |α〉) is the same for all
β ∈ �l(α), i.e.,

〈φ0|f (A)|β〉 = 1√
κl

〈φ0|f (A)|φl〉, (A.1)
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where, f (A) is any function of the adjacency matrix A of the network such that f (A) =∑d

l=0 akA
k and

|φl〉 = 1√
κl

∑

j∈�l(α)

|j〉, l = 0,1, . . . , d. (A.2)

To this aim, we take the Fourier transform of the unit vectors |φl〉 for l = 0,1, . . . , d as
follows

|φl,k〉 = 1√
κl

∑

j∈�l(α)

e2πijk/κl |j〉, l = 0,1, . . . , d; k = 0,1, . . . , κl − 1. (A.3)

Now, we show that

〈φ0|f (A)|φl,0〉 �= 0,

〈φ0|f (A)|φl,k〉 = 0, ∀k = 1, . . . , κl − 1.
(A.4)

To do so, we use the fact that there is a correspondence between the basis I,A, . . . ,Ad−1 and
the orthogonal polynomials Pi(A) defined by (4.43). In fact, as it was regarded previously
(see arguments about (4.43)), Al for l = 0,1, . . . , d can be written as a linear combination
of P0(A),P1(A), . . . ,Pd(A).

It should be noticed that, in Krylov subspace projection methods, approximations to the
desired eigenpairs of an n×n matrix A are extracted from a d-dimensional Krylov subspace

Kd(|φ0〉,A) = span{|φ0〉,A|φ0〉, . . . ,Ad−1|φ0〉}, (A.5)

where, |φ0〉 is often a randomly chosen starting vector called reference state and d � n,
i.e., the vectors |φ0〉,A|φ0〉, . . . ,Ad−1|φ0〉 constitute a basis for the Krylov subspace
Kd(|φ0〉,A). Then, the application of the orthonormalization process (the Lanczos algo-
rithm which is a modified version of the classical Gram-Schmidt orthogonalization process)
to the Krylov basis {Ak|φ0〉}d−1

k=0 is equivalent to the construction of a sequence of ortho-
normal basis |φj 〉 = Pj (A)|φ0〉, where Pj (A) = a0 + a1A + · · · + ajA

j is a polynomial of
degree j in indeterminate A.

As regards the above arguments, any function f (A) can be expanded as a linear combi-
nation of the polynomials Pj (A), i.e.,

f (A) =
d∑

j=0

bjPj (A). (A.6)

Then, we have

〈φ0|f (A)|φl,k〉 =
d∑

j=0

bj 〈φ0|Pj (A)|φl,k〉 =
d∑

j=0

bj 〈φj,0|φl,k〉
︸ ︷︷ ︸

δjl δk0

= 0, ∀k = 1, . . . , κl − 1.

(A.7)

Now, let we denote 〈φ0|f (A)|j〉 by xj for j ∈ �l(α). Then, from (A.7) we have

F

⎛

⎜
⎜
⎜
⎝

x1

x2
...

xκl

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

〈φ0|f (A)|φl,0〉
0
...

0

⎞

⎟
⎟
⎟
⎠

, (A.8)
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where, F is the κl × κl discrete Fourier transformation matrix(DFT) defined as Fjk =
1√
κl

e2πijk/κl . Therefore, by inverting F in (A.8), we obtain

⎛

⎜
⎜
⎜
⎝

x1

x2
...

xκl

⎞

⎟
⎟
⎟
⎠

= F †

⎛

⎜
⎜
⎜
⎝

〈φ0|f (A)|φl,0〉
0
...

0

⎞

⎟
⎟
⎟
⎠

= 1√
κl

⎛

⎜
⎜
⎜
⎝

〈φ0|f (A)|φl,0〉
〈φ0|f (A)|φl,0〉

...

〈φ0|f (A)|φl,0〉

⎞

⎟
⎟
⎟
⎠

. (A.9)

That is, we obtain xj = 〈φ0|f (A)|j〉 = 1√
κl

〈φ0|f (A)|φl,0〉 for all j ∈ �l(α). �
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